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Abstract

Cost-Sensitive Logistic Regression

Several real-world classification problems are example-dependent cost-
sensitive in nature, where the costs due to misclassification vary between Logistic Regression
examples. Credit scoring is a typical example of cost-sensitive ko
classification. However, it is usually treated using methods that do not take pi = Ply=1\X;) = he(X;) =g (Z thttg)
into account the real financial costs associated with the lending business. j=1
In this paper, we propose a new example-dependent cost matrix for credit Cost function
scoring. Furthermore, we propose an algorithm that introduces the
example-dependent costs into a logistic regression. Using two publicly Ji(0) = —y; log(he(X;)) — (1 — y;) log(1 — ho(X;))
available datasets, we compare our proposed method against state-of-the-
art example-dependent cost-sensitive algorithms. The results highlight the Analysis of the cost function
importance of using real financial costs. Moreover, by using the proposed .
cost-sensitive logistic regression, significant improvements are made in the 7. (H) ~ 0 it y; ~ }19(}{1’)
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Cost(f(S)) = Z (Qi(CiCTP- + (1 —¢)Cry,) Proposed example-dependent cost-sensitive cost function
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